The Best Lunar Grazing Occultations in North America during 2023

The map below shows the paths of lunar grazing occultations for the 22 brighter stars and planets visible from much of North America in 2023. The events are limited to stars of magnitude 5.5 or brighter that will graze the limb of the Moon when it is at a favorable elongation from the Sun and at least as high above the horizon in degrees as the star's magnitude (e.g., a third-magnitude star is included only if its altitude is at least 3°). Some stars fainter than mag. 5.5 are included, to provide a good geographical distribution of paths. The map is a "false" projection, since the latitude and longitude scales are both linear. This makes it much easier for measuring coordinates or plotting locations with known coordinates than is possible with any other type of projection. The longitude scale is compressed by a factor of $\cos 50^{\circ}$. The maps are not detailed enough for locating oneself in the 2- or 3-km-wide zone where multiple disappearances of the star may occur. To obtain detailed predictions of any graze for plotting on larger-scale maps of your region, write to IOTA at PO Box 20313, Fountain Hills, AZ $85268-0313$ or better, send an email to business@occultations.org. For some grazes, IOTA overlays the predicted limit line on the very detailed maps and imagery of maps.google.com, but further corrections are needed based on the predicted lunar profile and the observer's height above sea level. A Web .htm file to do this is generated by IOTA's Occult4 program available free at http://www.lunar-occultations.com/iota/occult4.htm . The height above sea level in the area where the graze will occur, needs to be specified when generating the .htm file.

The 2023 month and day of month, and the star or planet's name or number are given along each track on the map. Conditions are represented by three different types of lines:
solid line = dark limb, night; dashed line = bright limb, night; and dotted line, dark or bright limb, day.
The best lunar grazing occultations in North America during 2023

Thicker lines are drawn for first-magnitude stars and planets. Many tracks begin and/or end with the letter A, B, or S : A denotes that the Moon is at a low altitude, B that the bright limb interferes, and S that sunlight or twilight interferes. The tick marks along the tracks indicate multiples of 10 min of every hour. For
example, if the time for the west end of the track is $3: 16.2$, the tick marks proceeding eastward correspond to 3:20, 3:30, etc. Time always increases from west to east along the path. The time ticks are on the side of the limit with an occultation, that is north of southern limits and south of northern limits. The locations for the North American standard stations for lunar total occultation predictions given on pages 162-171 of the 2023 Handbook are indicated by asterisks on the graze map. 248 grazes are shown on six maps and tables, similar to what we published in the Handbook for previous years, at track on the map.

Table of the best lunar grazing occultations in North America during 2023

Date	Object Name	ZC/SAO	d m	\%sl	L	$\begin{aligned} & \text { W.U.T. } \\ & \text { h m } \end{aligned}$	Lo.	La.
Jan. 24	$\psi^{3} \mathrm{Aqr}$	ZC 3428	A 5.0	13+	S	2212.6	-78	45
Jan. 31	Mars		-0.3	74+	N	438.8	-130	35
Feb. 13	1 Librae	ZC 2172	Z 4.5	54-	S	832.0	-112	36
Feb. 16		ZC 2645	6.2	21-	S	1056.5	-90	39
Feb. 17		ZC 2831	6.0	12-	S	1058.5	-85	30
Feb. 24		ZC 226	Y 6.5	17+	S	035.7	-98	36
Feb. 24		SAO 109	7.0	18+	S	113.2	-109	42
Feb. 25	29 Arietis	ZC 374	V 6.0	29+	S	544.4	-130	38
Mar. 15		ZC 2586	K 6.0	46-	S	1120.7	-120	45
Mar. 25	ρ Arietis	ZC 433	5.6	13+	N	232.4	-122	44
Mar. 26		ZC 566	6.0	21+	N	241.1	-102	55
Mar. 29	49 Aur	ZC 1008	5.3	49+	N	232.7	-122	35
Apr. 23	62 Tauri	ZC 652	Y 6.3	10+	N	311.9	-92	55
May 22	136 Tauri	ZC 890	V 4.6	6+	N	235.4	-114	35
May 23		ZC 1035	X 6.7	11+	N	059.0	-84	37
Jun. 5		ZC 2617	K 4.5	98-	N	1134.5	-130	40
Jul. 22		ZC 1625	Y 5.8	16+	N	330.7	-118	41
Aug. 4	$\psi^{1} \mathrm{Aqr}$	ZC 3419	A 4.2	91-	N	456.4	-115	42
Aug. 13		ZC 1108	V 7.0	8-	N	922.5	-103	47
Aug. 25	Antares	ZC 2366	O 1.1	57+	S	152.5	-130	37
Oct. 8	v^{1} Cancri	ZC 1274	K 5.7	34-	N	$7 \quad 2.7$	-99	40
Oct. 21	59 Sgr	ZC 2912	4.5	48+	S	2342.5	-94	25
Nov. 8		ZC 1648	6.9	23-	S	$9 \quad 9.1$	-102	54
Dec. 15		ZC 2831	6.0	5+	S	051.1	-110	23
Dec. 16	33 Cap	ZC 3130	5.4	19+	S	2324.5	-89	21
Dec. 19	$\psi^{1} \mathrm{Aqr}$	ZC 3419	A 4.2	40+	S	07.8	-113	41
Dec. 19	27 Psc	ZC 3526	A 4.9	50+	S	2018.1	-59	45

The columns of the table above are explained below:

Date	The 2023 date
Object name	Planet name, or star's proper name, Bayer Greek letter or Flamsteed number
ZC/SAO	The star's ZC or Smithsonian Astrophysical Observatory (SAO) catalogue number
d	Double star code (if the star is double or triple) - see below
m	The star's visual magnitude
\%sl	the percent of the Moon sunlit (+ for waxing, - for waning, E for lunar eclipse*)
L	whether the track is a northern (N) or southern (S) limit
W.U.T.	the Universal Time at the west end of the track
Lo., La.	the longitude and latitude of the west end of the track

Occulted stars known to be double

In the table below gives data for double stars for which graze predictions are given, either on the map and table above, or on the maps and tables of the 248 grazes portrayed elsewhere on this Web page. The information is from DSFILE, a comprehensive file of zodiacal double-star data compiled by Don Stockbauer, Henk Bulder, Mitsuru Sôma, David Herald, and David Dunham; most of the data for the ZC stars are in the Sato ZC catalogue. The successive columns give the ZC number of the star, the 2023 graze date, the double star code (d), the magnitudes of the brighter (A) and fainter (B) components, the separation in arcseconds, and the position angle (PA) of B from A measured eastward from north. If the star is triple, the third component's magnitude is given under C, and its separation and PA from A are given in the last columns.

The parameters are given for the epoch of the occultation, computed from orbital elements when available or from extrapolations from a long series of observations. If there is little change in the available observations, the last-observed separation and PA are used. Most components fainter than magnitude 12.0 are not listed, and some very close doubles whose parameters are not known, generally with separations less than $0.2^{\prime \prime}$, are also not listed. The latter include spectroscopic binaries (code U , or sometimes V) and visual occultation doubles (most codes K and X , and many Vs).

The codes have the following meanings:
A...........Visual double listed by Aitken and/or Burnham (ADS, BDS)

C Visual double listed by Innes, Couteau, or other visual observers
D........... primary of wide pair; secondary has separate catalogue entry
H........... triple, with close occultation pair and third visual component; prediction uses a mean position (J,U,orV \& M)
K...........U or V, but duplicity doubtful, only reported "gradual" from a past visual occultation observation
L............ close triple star (only two stars often listed because inner pair is often spectroscopic; J or U, \& V; all V; or all J)
M.......... mean position (centre of light) of a close pair is used by the ZC and/or XZ catalogue
O............orbital elements available and used to calculate the separation and PA
U........... Double, separation $0.05^{\prime \prime}$ or less, usually a 2-line spectroscopic binary

V Close double discovered by occultation or by interferometry
Ytriple, K or X (visual A component) and A or C (C component)
Z triple, O (A/B components) and V (C component) (O and A or C, or V or X or L)
Many close pairs have rapid orbital motion such that the current separation and/or PA is unknown, and they are then not listed in the table below.

ZC\#	$\begin{aligned} & 2023 \\ & \text { Date } \end{aligned}$	d	A	B	Sep.	$\underset{0}{\mathbf{P A}}$	C	$\underset{\sim}{\text { Sep. }} \mathbf{P A}$			Notes
55	Jul. 9		M	6.5	8.9	0.4	267				
226	Feb. 24		Y	7.2	7.2	0.1	90	10.7	4.2	74	
416	Aug. 8		M	5.5	8.4	3.2	120				
442	Jul. 12		M	6.8	9.8	2.2	50				
485	Sep. 5		M	7.0	10.8	0.6	338				Was also occulted on April 21
486	Sep. 5		H	5.4	7.9	0.2	38	8.2	0.8	227	
487	Sep. 5		M	5.3	8.5	0.5	289				
594	Jul. 13		A	6.9	7.8	7.3	128	9.3	58.0	241	
598	Oct. 3		T	6.4	6.4	0.1	214	12.2	25.5	257	
652	Apr. 23		Y	7.2	7.2	0.1	90	8.8	28.9	290	
844	July 15		M	6.6	6.6	1.1	134				Was also occulted on March 28
885	Oct. 5		Y	5.9	7.2	0.01	270	12.0	15.0	232	
909	Sep. 8		T	6.2	8.2	0.03	194	12.43	350.3	242	Was also occulted on March 1
1026	Oct. 6		C	6.5	11.7	30.7	46	10.4	55.9	57	
1093	Nov. 3		Z	7.2	7.2	0.7	296	12.3	15.6	94	
1093	Apr. 26		Z	7.2	7.2	0.7	297	12.3	15.6	94	
1181	Oct. 7		M	7.0	10.1	0.4	208				
1211	Dec. 1		C	6.2	11.0	45.5	23				
1263	Mar. 31		D	7.1	7.6	5.8	49				
1363	Apr. 1		M	5.7	6.2	0.3	62				
1596	Oct. 11		A	7.0	12.0	1.5	95				
1625	Jul. 22		Y	6.7	6.7	0.1	90	11.4	21.5		
1772	Nov. 9		O	4.6	5.9	0.1	102				

$\mathbf{2 1 7 2}$	Feb. 13	Z	$\mathbf{5 . 0}$	$\mathbf{6 . 2}$	$\mathbf{0 . 1}$	$\mathbf{8 5}$	$\mathbf{9 . 2}$	$\mathbf{5 7 . 8}$	$\mathbf{1 1 1}$
2349	Aug. 24	L	3.3	5.3 .0005		5.2	0.4	258	
$\mathbf{2 3 6 6}$	Aug. 25	\mathbf{O}	$\mathbf{1 . 2}$	$\mathbf{5 . 5}$	$\mathbf{2 . 3}$	$\mathbf{2 7 4}$			
$\mathbf{2 5 8 6}$	Mar. 15	K	$\mathbf{6 . 3}$	$\mathbf{7 . 3}$	$\mathbf{0 . 3}$	$\mathbf{2 7 6}$			
$\mathbf{2 6 1 7}$	Jun. 5	K	$\mathbf{5 . 1}$	$\mathbf{5 . 9}$	$\mathbf{0 . 3}$	$\mathbf{1 2}$			
3178	Nov. 20	U	6.9	7.0	0.001				
3356	Jul. 7	V	6.4	6.9	0.1	109			
$\mathbf{3 4 1 9}$	Aug. 4	A	$\mathbf{4 . 5}$	$\mathbf{8 . 5}$	$\mathbf{4 9 . 6}$	$\mathbf{3 1 2}$			
3428	Jan. 24	A	5.2	11.2	1.8				
$\mathbf{3 5 2 6}$	Dec. 19	A	$\mathbf{5 . 1}$	$\mathbf{1 0 . 4}$	$\mathbf{1 . 3}$	$\mathbf{3 1 3}$			

Will also be occulted Dec. 19

The lines in the double star table in bold type are for grazes shown on the map on the first page of this document.

Names of occulted stars

The stars that are occulted by the Moon are stars that lie along the zodiac; hence they are known by their number in the Zodiacal Catalogue (ZC) compiled by James Robertson and published in the Astronomical Papers Prepared for the Use of the American Ephemeris and Nautical Almanac, Vol. 10, Part 2 (U.S. Government Printing Office, Washington, 1940). Robertson's ZC has been out of print for many years. In 1986, Isao Sato, a member of the Lunar Occultation Observers Group in Japan, republished the ZC. This new edition is based on the epoch J2000 and includes much new data, particularly on double stars. Since stars are not usually recognized by their ZC numbers, the Bayer designations or Flamsteed numbers of the stars occulted during 2023 are given in the table below. The ZC and larger XZ (now version XZ80Q) catalogues, updated in 2018 by D. Herald using Gaia data, are available through IOTA's website.

ZC Name	ZC Name	ZC Name
5510 Cet	102625 Gem	2270 V1040 Sco
15373 Psc	108847 Gem	2349 б Sco (Al Niyat)
16780 Psc	111959 Gem	2366 ~ Sco (Antares)
180ζ PscA	1149 v Gem	237122 Sco
18488 Psc	116976 Gem	250543 Oph
27254 (Cet)/Ari	1206 a Cnc	2554 X Sgr
37429 Ari	12114 Cnc	2631 V4045 Sgr
41540 Ari	1233 \% Cnc	2910 ف Sgr
416π Ari	1251λ Cnc	291259 Sgr (Terebellum)
42944 Ari	126324 Cnc	291460 Sgr
43245 Ari	127028 Cnc	313033 Cap
433ρ Ari	$1274 u^{1} \mathrm{Cnc}$	314135 Cap
44250 Ari	$1279 v^{2} \mathrm{Cnc}$	315837 Cap
45553 Ari	1363 ¢ Cnc	316038 Cap
465δ Ari (Botein)	136579 Cnc	3164ε Cap
486 т Ari	1484η Leo	3175 к Сар
48763 Ari	150437 Leo	330456 Aqr
49265 Ari	174910 Vir	335674 Aqr
58232 Tau	1772η Vir (Zaniah)	335875 Aqr
58433 Tau	1891 日 Vir (Apami-Atsa)	$3419 \psi^{1}$ Aqr
59836 Tau	194576 Vir	$3425 \psi^{2}$ Aqr
65262 Tau	2021 ER Vir	$3428 \psi^{3} \mathrm{Aqr}$
890136 Tau	212010 Lib	352627 Psc
100849 Aur	2172 1 Lib	353529 Psc
102254 Aur		

Eberhard Riedel, E Riedel@msn.com
David and Joan Dunham, dunham@starpower.net, 2023 May 23

