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Introduction:

Occular is a program that has been used, particularly within the IOTA community, to process 
asteroid occultation signals.  It was first released in July 2007 with a major upgrade in 
February 2009.  The statistical approach taken in Occular would be described as 'frequentist' 
and used Monte Carlo techniques and hypothetical data in producing its results.  To put that 
program on a more solid statistical foundation, the author, prodded (unmercifully) by Tony 
George, undertook a study of how Bayesian Inference might be applied to the analysis of 
occultations.

That study was successful in developing relevant mathematical procedures based on 
Bayesian Inference and/or Maximum Likelihood estimation.  Those studies were done using 
the R language, an interpreted language that is particularly well suited for statistical 
calculations, but not for production use.  We are now at the point where the procedures that 
have been developed are ready to be made accessible to the IOTA community in an easy to 
use program.  Hristo Pavlov, an active IOTA member, has agreed to take on the task of 
producing two programs currently identified as OTE (Occultation Time Extractor) and LCSA 
(Light Curve Statistical Analyser).  The OTE program will deal with occultations where the 
'event' is obvious.  LCSA will deal with more problematic observations where the occultation is 
not readily apparent.

Mathematical background:
  
We start with a parametized model of a light curve

where xi is the time of the reading and θ1 … θn are the parameters of the light curve.
For example, a star disk intersecting an asteroid disk model will have up to 7 parameters
such as star and asteroid diameter, asteroid speed, track offset, etc.

Given an occultation observation yi (i=1 to m), we want to determine the values for
θ1 … θn that best 'explains/fits' the observed data using the selected light curve model.

In order to solve this problem using the equivalent approaches of Bayesian Inference (BI)
or Maximum Likelihood Estimation (MLE), we must also select a noise model.  For
star/asteroid occultations it is reasonable to assume that the readings are affected by noise
that has Gaussian distribution.



Given these two explicit models (explicit means we know how to produce numbers from the 
models), we can now calculate the probability of each observation point relative to the 
theoretical light curve as follows:

where the right hand side of the above equation is simply the Gaussian probability
density function.  All we are saying is that the observed data points differ from
the theoretical value given by our light curve model by the addition of gaussian
noise characterized by σi (the noise at that point) and furthermore that points that lie off the 
expected light curve are less probable than those that lie on or near to it.

Note: p( yi | θ1 … θn ) is the usual notation for conditional probability and is verbalized
as 'the probability of yi given θ1 … θn'.

The probability of a series of independent measurements is simply the product of the 
individual probabilities, so the conditional probability of the complete observation can be 
calculated as:

At this point, we could take the MLE approach and state that the values of θ1 … θn that
maximize the complete observation probability are the 'solution' to our problem.

Or, we could apply Bayes rule that links the conditional probability of a model, given the data, 
to the conditional probability of the data, given the model.

The linkage that Bayes rule gives us is:

The term p( θ1 … θn ) on the right hand side is called (in Bayes-speak) the prior.  It encodes
what we know about the values of the parameters before we make a measurement.  Since
we have no reason to favor any particular value of a parameter over another, we choose a
'uniform' prior (equal probabilities for all parameter values) which results in p( θ1 … θn ) being 
a constant.



The term p( obs ) is also a constant.  It is also one that is very difficult to compute, but 
fortunately we don't have to because of the fact that

is sufficient for our needs as it says that if you maximize the right-hand side (which we know 
how to calculate), the left side is maximized as well, and importantly, the shape of the 
probability distribution of the left hand side is the same as the shape of the right hand 
distribution --- multivariate normal; i.e., a product of gaussians.  Note that the term 
dθ1dθ2...dθn also becomes irrelevant.

So, both the MLE and the BI approaches maximize the same equation, and that's why we 
earlier asserted that the approaches are equivalent.  The BI approach gives us easily the 
additional important information about the parameter distributions that allows us to confidently 
compute error bars.

In principal, we're done --- the problem is solved.  But in practice, maximizing p(obs| θ1 … θn ) 
is non-trivial.  For example, suppose one tried a brute force approach where each parameter 
was allowed to range over a hundred values, a value was calculated at each point, and the 
parameter set that corresponded to the highest value was selected as the solution.  If the 
model included 6 variable parameters, one would need to calculate 10^12 points.  That would 
take too long, even in today's computing environment.  The MCMC algorithm (Markov Chain 
Monte Carlo) was developed to solve such problems and is the technique that will be used in 
the OTE program.  It is straightforward to apply this computational tool when the SNR is 
favorable, and that is the regime in which the OTE program will be used.

We have also succeeded in giving a solid statistical treatment of low SNR observations.  That 
work will be incorporated into the LCSA program and makes extensive use of the AIC (Akaike 
Information Criterion) to compare a straight line model (i.e., no event) with a square wave 
model.  The parameter region(s) where the probability of a square wave model is at least 0.99 
is then explored using the MCMC algorithm.  It is necessary to perform this pre-location work 
because low SNR events can be troublesome for the MCMC algorithm unless it is given a 
good starting point.  We have demonstrated that this is possible with both live and simulated 
data. 


